Недостатки IPv4

Недостатки IPv4 модно разбить на две большие группы:

  • проблемы масштабируемости;
  • отсутствие некоторых обязательных механизмов.

Проблемы масштабируемости

Проблемы масштабируемости IPv4 проявляются не только в таком колоссальном объединении сетей, как Интернет, но и в крупных корпоративных сетях. Состоят они в следующем:

  • недостаточность объема 32-битного адресного пространства;
  • сложность агрегирования маршрутов, разрастание таблиц маршрутизации;
  • сложность массового изменения IP-адресов;
  • относительная сложность обработки заголовков пакетов IPv4.

Обычно, когда говорят о недостатках IPv4, в первую очередь обращают внимание на проблему исчерпания 32-битного адресного пространства. Действительно, эта проблема лежит на поверхности, хотя опасность не слишком близка: при сохранении существующих тенденций роста Интернет свободные адреса кончатся примерно к 2005 году.

Более реальной и более близкой опасностью является чрезмерный рост таблиц магистральных маршрутизаторов и, как следствие, деградация производительности последних. Эта опасность вызвана не столько ростом числа IP-адресов, сколько сложностью агрегирования (объединения) маршрутов к сетям. В работе [5] (ноябрь 1992 года) отмечалось, что множество IP-адресов класса B близко к исчерпанию. Назывался и предполагаемый срок исчерпания — два года. Это значит, что организациям, в том числе сколько-нибудь крупным, имеющим более 253 компьютеров, придется выделять IP-адреса (точнее, блоки адресов) класса C. Ясно, что даже относительно небольшой доли двухмиллионного набора номеров сетей класса C достаточно, чтобы сделать задачи маршрутизации и администрирования маршрутных таблиц неразрешимыми. Действительно, до введения так называемой бесклассовой междоменной маршрутизации (Classless Inter-Domain Routing, CIDR, см. [6]-[8]) ситуация в этом плане выглядела просто безнадежной — таблицы маршрутизации росли в полтора раза быстрее объемов оперативной памяти. Бесклассовая маршрутизация, позволившая сформировать иерархию IP-адресов на основе маршрутов их достижения, существенно улучшила положение, продлив век IPv4. Тем не менее, большое количество старых, плохо выделенных IP-адресов продолжает отягощать схему CIDR. Кроме того, в пределах 32 бит (точнее, 24 бит, если иметь в виду только номера сетей) трудно построить содержательную иерархию с несколькими уровнями — на это попросту нет места.

Введение в рамках CIDR иерархии на основе отношения поставщик/пользователь Интернет-услуг обострило проблему администрирования IP-хостов. По существу IP-адрес распался на две составляющие, одна из которых определяется Интернет-провайдером, а вторая находится в ведении организации. При изменении каждой из этих составляющих (например, при переходе к другому поставщику Интернет-услуг) приходится решать задачу "перенумерации" узлов сети, то есть массового изменения их IP-адресов (см. [9]). Для больших организация подобная задача является нетривиальной, требующей выделения соответствующих ресурсов и чреватой перерывами в работе сети. Перенумерация затрагивает не только оконечные системы, но и маршрутизаторы, DNS-серверы, межсетевые экраны и т.п. Значит, нужны развитые средства автоматического конфигурирования, позволяющие узлам сети динамически выяснять свои IP-адреса, находить маршрутизаторы, определять адреса смежных узлов и т.п. Ручное вмешательство в перенумерацию должно ограничиваться конфигурированием небольшого числа параметров на небольшом числе систем. Отчасти данную проблему решает протокол динамического конфигурирования хостов (Dynamic Host Configuration Protocol, DCHP, см. [10]), но для полноценного решения необходима большая, чем это возможно в рамках IPv4, структуризация сетевых адресов, а также пересмотр управляющих протоколов, таких как ARP и ICMP.

Масштабируемость IP-сетей следует рассматривать не только с точки зрения увеличения числа узлов, но и с точки зрения повышения скорости передачи и уменьшения задержек при маршрутизации. Проблемы высокоскоростной маршрутизации рассматривались в статье [11], где, в частности, отмечалась относительная сложность обработки IP-пакетов маршрутизаторами.

Заголовок пакета IPv4 изображен на Рис. 1 (см. также [12]).

Сложность обработки проистекает из переменной длины заголовка и необходимости пересчитывать его контрольную сумму. На гигабитных скоростях приходится экономить каждый такт процессора, поэтому отмеченные проблемы достаточно неприятны.

Отсутствие некоторых обязательных механизмов

В IPv4 отсутствуют следующие обязательные по современным меркам механизмы:

  • механизмы информационной безопасности;
  • средства поддержки классов обслуживания.

В плане информационной безопасности особенно неприятно отсутствие стандартных средств аутентификации и шифрования данных. Исходный IP-адрес идентифицирует отправителя, но каких-либо аутентификаторов в пакете IPv4 нет, поэтому проверить подлинность отправителя практически невозможно, как невозможно и сформировать защищенный канал передачи данных с произвольным абонентом сети. (В работе [13] дано систематическое описание недостатков TCP/IP с точки зрения информационной безопасности.) Средства безопасности желательно реализовать именно на сетевом уровне, поскольку тогда они будут функционировать прозрачным для приложений образом, то есть не придется вносить изменения в существующее прикладное программное обеспечение.

Отсутствие поддержки классов обслуживания в IPv4 многие маршрутизаторы компенсируют собственными механизмами выделения IP-потоков (см. [11]), анализируя информацию транспортного уровня. Ясно, что такие решения оказываются закрытыми, не обеспечивающими сквозной поддержки классов обслуживания в разнородной среде, что в значительной степени эти решения обесценивает. Как и в случае механизмов безопасности, поддержка классов обслуживания должна быть реализована на сетевом уровне, поскольку обеспечивать ее будут маршрутизаторы, связывающие оконечные системы.


Сетевые протоколы нового поколения Содержание Идеи, положенные в основу нового поколения протоколов