![]() Идеи, положенные в основу нового поколения протоколовВ конце 1990 года, когда появились первые предсказания исчерпания адресного пространства IPv4, Тематическая группа по технологии Интернет (Internet Engineering Task Force, IETF) инициировала работу над IP-протоколом нового поколения, названным IP Next Generation, IPng. (На сегодняшний день это синоним IPv6.) В ноябре 1994 года был утвержден, а в январе 1995 года официально опубликован проект [14], завершивший период концептуальных дискуссий и положивший начало реальной стандартизации IPv6. В этом документе сформулированы основные требования к IPv6 и методы достижения поставленных целей, как краткосрочных, так и долгосрочных. Протокол IPv6 проектировался как преемник IPv4. Все, что в IPv4 было хорошо, должно остаться. Все, что не использовалось на практике, должно быть удалено. Недостатки, естественно, должны быть исправлены. В необходимых случаях функциональность IP должна быть расширена. Важнейшие инновации IPv6 состоят в следующем:
В IPv6 сохранена архитектурная простота, присущая IPv4 и ставшая одной из главных составляющих феноменального успеха IP-сетей. Основные принципы остались прежними. Все изменения планировались таким образом, чтобы минимизировать изменения на других уровнях протокольного стека TCP/IP. Размер IP-адреса увеличен до 128 бит (16 байт). Даже с учетом неэффективности использования адресного пространства, являющейся оборотной стороной эффективной маршрутизации и автоматического конфигурирования, этого достаточно, чтобы обеспечить объединение миллиарда сетей, как того требовали документы IETF. Любопытно отметить, что на предварительном этапе обсуждалось четыре предложения, касающиеся размера IP-адреса:
У каждой группы были свои достаточно убедительные аргументы, но выбрать надо было что-то одно, и с этим выбором все в конце концов согласились. В IPv6 сохранена топологическая гибкость сетей. Единственное ограничение наложено на число промежуточных маршрутизаторов - не более 256. Сохранена и независимость от среды передачи. Улучшены условия для эффективной обработки пакетов. Структура заголовка упрощена, ликвидировано его контрольное суммирование. Обеспечена возможность простого и гибкого автоматического конфигурирования адресов для сетей по существу произвольного масштаба и сложности. Средства аутентификации и шифрования вынесены на IP-уровень. Это позволяет пользоваться данными средствами другим протоколам, например, управляющим. Тем самым сокращается число сущностей, уменьшается сложность и повышается надежность реализации. С другой стороны, соединение сетевых и криптографических протоколов способно создать проблемы в таких странах, как Россия, где государство жестко контролирует производство и импорт криптосредств. Стандартная реализация стека TCP/IP может рассматриваться как криптосредство со всеми вытекающими отсюда последствиями. В IPv6 явно специфицирована поддержка многоадресной рассылки (multicast). Новой является адресация "наиболее подходящего" сетевого интерфейса из числа членов группы (anycast), позволяющая решить проблему единообразного обращения к элементам пула взаимозаменяемых ресурсов. Для поддержки классов обслуживания в заголовок пакета IPv6 введено поле метки потока. Предусмотрено спецификациями и туннелирование протоколов, осуществляемое в разных сочетаниях (IPv6 внутри/снаружи). Разумеется, IPv6 остался расширяемым протоколом, причем поля расширений (дополнительные заголовки) могут добавляться без снижения эффективности маршрутизации. Важно подчеркнуть, что в спецификациях IPv6 детально описан реалистичный процесс перехода от IPv4 к IPv6. Важно и то, что с самого начала был запланирован пересмотр всех утвержденных и готовящихся стандартов на предмет выявления изменений, желательных или необходимых при переходе на IPv6. Логическим дополнением базовых спецификаций IPv6 являются новые версии адресной архитектуры, сервиса имен, управляющего протокола ICMP и т.д. В последующих разделах мы детально опишем то новое, что появилось в IPv6 и ассоциированных спецификациях.
|