Центральная Научная Библиотека  
Главная
 
Новости
 
Разделы
 
Работы
 
Контакты
 
E-mail
 
  Главная    

 

  Поиск:  

Меню 

· Главная
· Биология
· Геология
· Зоология
· Коммуникации и связь
· Бухучет управленчучет
· Водоснабжение   водоотведение
· Детали машин
· Инновационный   менеджмент
· Качество упр-е   качеством
· Маркетинг
· Математика
· Мировая экономика МЭО
· Политология
· Реклама и PR
· САПР
· Биология и химия
· Животные
· Литература   языковедение
· Менеджмент
· Не Российское   законодательство
· Нотариат
· Информатика
· Исторические личности
· Кибернетика
· Коммуникация и связь
· Косметология
· Криминалистика
· Криминология
· Наука и техника
· Кулинария
· Культурология
· Логика
· Логистика
· Международное   публичное право
· Международное частное   право
· Международные   отношения
· Культура и искусства
· Металлургия
· Муниципальноое право
· Налогообложение
· Оккультизм и уфология
· Педагогика


Системы линейных уравнений и неравенств

Системы линейных уравнений и неравенств

Системы линейных уравнений и неравенств

Основные вопросы лекции: основные понятия и определения теории систем уравнений; система n линейных уравнений с n неизвестными; метод обратной матрицы; метод Крамера; метод Гаусса; теорема Кронекера-Капелли; система n линейных уравнений с m неизвестными; однородные системы линейных уравнений; фундаментальная система решений; структура общего решения.

Система m линейных уравнений с nпеременными имеет вид:


 


или


 (1)


где a11, a12, … , amn— произвольные числа, называемые соответственно коэффициентами при переменных и b1,b2, … , bm - свободными членами уравнений.

Решением системы(1) называется такая совокупность nчисел х1, х2, ... , хn , при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.

Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Запишем систему (1) в матричной форме. Обозначим:

; В=(b1, b2, … , bn)т; Х=(x1, x2, … , xn)т


где А— матрица коэффициентов при переменных, или матрица системы, Xматрица-столбец переменных; В — матрица-столбец свободных членов.

На основании определения равенства матриц систему (1) можно записать в виде:

А*Х=B (2)

А матрица состоящая из А, В, Х матриц называется расширенной матрицей:

 

- расширенная матрица.


Метод Гаусса — метод последовательного исключения переменных — заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Рассмотрим решение системы (1) m линейных уравнений с nпеременными в общем виде:


 (3)

Если m=n, то рассмотрим расширенную матрицу. Учитывая правую часть, приведем данную матрицу к треугольному виду:

 


Ситема линейных уравнении соотвествующее данной матрице запишем в следуюшем виде


 (4)


Если в данном уравнении cnn≠0, cn-1n-1≠0, ... , c33≠0, c22≠0, a11≠0 то, в первую очередь найдем

xn, а затем постепенно поднимаясь находим остольные решения - xn-1, … , x3, x2, x1.

Формула Крамера

Теорема Крамера. Пусть |A|— определитель матрицы системы А, а Δj — определитель матрицы, получаемой из матрицы А заменой j-го столбца столбцом свободных членов. Тогда, если Δ ≠0, то система имеет единственное решение, определяемое по формулам:


(5)


Формулы (5) получили название формул Крамера.

Метод обратной матрицы

Пусть число уравнений системы (1) равно числу переменных, т.е. m=n. Тогда матрица системы является квадратной, а ее определитель Δ=|A| называется определителем системы.

(1) уравнение можно записать в матричном виде


А*Х=B (6)

, , .


Умножая слева обе части матричного равенства (6) на матрицу А-1,получим А-1(АХ)=А-1В. Так как А-1(АХ)=( А-1А)Х=ЕХ=Х,то решением системы методом обратной матрицы будет матрица-столбец

Х=А-1*B (7).

Система n линейных уравнений с n переменными

Решение системы n линейных уравнений с n переменными находять ниже укаженными методами:

1)     Метод обратной матрицы;

2)     Формула Крамера;

3)     Метод Гаусса.

Теорема Кронекер – Капелли. Система m линейных уравнений с n переменными

Теорема Кронекера—Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

Для совместных систем линейных уравнений верны следующие теоремы.

1. Если ранг матрицы совместной системы равен числу переменных, т.е. r=n, то система (1) имеет единственное решение.

2. Если ранг матрицы совместной системы меньше числа переменных, т.е. r<n, то система (1) неопределенная и имеет бесконечное множество решений.

Системы линейных однородных уравнений

Система mлинейных уравнений с n переменными называется системой линейных однородныхуравнений, если все их свободные члены равны нулю. Такая система имеет вид:


 (8)


Система линейных однородных уравнений всегда совместна, так как она всегда имеет, по крайней мере, нулевое (или тривиальное) решение (0; 0; ...; 0).

Систему (8) можно записать а виде:


А*Х=0 (9).


Если в системе (8) m=n, а ее определитель отличен от нуля, то такая система имеет только нулевое решение, как это следует из теоремы и формул Крамера. Ненулевые решения, следовательно, возможны лишь для таких систем линейных однородных уравнений, в которых число уравнений меньше числа переменных или при их равенстве, когда определитель системы равен нулю.

Иначе: система линейных однородных уравнений имеет ненулевые решения тогда и только тогда, когда ранг ее матрицы коэффициентов при переменных меньше числа переменных, т.е. при r(A)<n.







Информация 






© Центральная Научная Библиотека