Центральная Научная Библиотека |
|
|
|
|
|
|
Главная |
|
![]() |
![]() |
![]() |
3. Построить гистограммы распределения случайных величин и . 4. Найти выборочное среднее , и исправленные выборочные дисперсии: , случайных величин и . 5. Проверить, используя метод гипотезу о нормальном распределении, каждой из случайных величин и при уровне значимости . 6. Построить график функции плотности распределения случайной величины в одной системе координат с гистограммой.( взяв в качестве математического ожидания их статистические оценки и ) и вычислив значение функции в точках: , , а также в точке левее первого и правее правого промежутка группировки. 7. Выполнить задание 6 для случайной величины . 8. Найти доверительные интервалы для математических ожиданий и дисперсий случайных величин и , соответствующие доверительной вероятности . 9. Проверить статистическую гипотезу при альтернативной гипотезе на уровне значимости . 10. Проверить статистическую гипотезу при альтернативной гипотезе на уровне значимости . Решение1. Построить вариационные ряды для случайных величин и . Вариационный ряд величины | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-6 |
12 |
22 |
33 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-5 |
12 |
23 |
34 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-4 |
12 |
23 |
34 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-3 |
12 |
24 |
34 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0 |
13 |
24 |
35 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
14 |
25 |
36 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
14 |
25 |
36 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
15 |
25 |
36 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
16 |
25 |
37 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 |
16 |
25 |
38 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 |
16 |
25 |
38 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 |
16 |
25 |
38 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 |
16 |
26 |
39 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
16 |
26 |
39 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
17 |
26 |
40 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
17 |
27 |
40 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 |
17 |
27 |
40 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 |
18 |
28 |
40 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 |
18 |
29 |
41 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 |
19 |
29 |
44 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 |
19 |
29 |
45 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 |
19 |
30 |
46 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 |
19 |
30 |
48 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 |
19 |
30 |
48 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 |
19 |
30 |
49 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 |
20 |
31 |
49 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 |
20 |
31 |
51 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 |
20 |
32 |
52 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 |
20 |
32 |
55 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 |
21 |
32 |
58 |
Вариационный ряд величины
1
21
2
22
2
23
3
23
4
24
4
25
6
25
9
25
9
25
10
26
10
26
11
26
11
27
12
27
12
30
13
30
14
31
15
32
16
37
16
38
16
38
17
39
17
40
18
44
19
45
19
48
19
49
19
51
20
52
20
58
2. Произведя группировку элементов каждой выборки (используя формулу Стерджеса) построить статистические ряды распределения случайных величин и .
Найдем количество элементов выборок после группировки элементов
Величина :
Величина :
Сгруппировав элементы получим статистический ряд распределения случайной величины
№ пр-ка
Границы промежутка
Середина промежутка
Количество элементов выборки в промежутке
Частота для промежутка
1
-8 ; 0
-4
4
0.0333
2
-0 ; 8
4
15
0.1250
3
8 ; 16
12
19
0.1583
4
16 ; 24
20
25
0.2083
5
24 ; 32
28
24
0.2000
6
32 ; 40
36
17
0.1417
7
40 ; 48
44
8
0.0667
8
48 ; 56
52
8
0.0667
Сгруппировав элементы получим статистический ряд распределения случайной величины
№ пр-ка
Границы промежутка
Середина промежутка
Количество элементов выборки в промежутке
Частота для промежутка
1
0; 9
4,5
7
0.1167
2
9 ; 18
13,5
16
0.2667
3
18 ; 27
22,5
19
0.3167
4
27 ; 36
31,5
6
0.1000
5
36 ; 45
40,5
6
0.1000
6
45 ; 54
49,5
5
0.0833
7
54 ; 63
58,5
1
0.0167
3. Построить гистограммы распределения случайных величин и .
Гистограммы распределения приведены на графиках с теоретическими функциями распределения.
4. Найти выборочное среднее , и исправленные выборочные среднеквадратические отклонения: , случайных величин и .
Выборочное среднее случайной величины равно
Выборочное среднее случайно величины равно
Найдем исправленное среднеквадратическое отклонение случайной величины :
=14.3632
Найдем исправленное среднеквадратическое отклонение случайной величины :
=13.5727
5. Проверить, используя метод гипотезу о нормальном распределении, каждой из случайных величин и при уровне значимости .
Проверим гипотезу о нормальном распределении случайной величины .
Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле
, где - объем выборки, - шаг (разность между двумя соседними вариантами, ,
Построим вспомогательную таблицу:
1
4
-1.9169
4.2461
0.0606
0.014
2
15
-1.3600
10.5760
19.572
1.850
3
19
-0.8030
19.3161
0.0999
0.005
4
25
-0.2460
25.8695
0.7561
0.0292
5
24
0.3110
25.4056
1.9757
0.0778
6
17
0.8680
18.2954
1.6780
0.0917
7
8
1.4249
9.6610
2.7590
0.2856
8
8
1.9819
3.7409
18.139
4.8491
В итоге получим = 7,2035
По таблице критических точек распределения ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 8-3=5 находим
Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины .
Для случайной величины :
Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле
, где - объем выборки, - шаг (разность между двумя соседними вариантами, ,
1
7
-1.4036
5.9274
1.1504
0.1941
2
16
-0.7405
12.0665
15.4725
1.2823
3
19
-0.0774
15.8248
10.0820
0.6371
4
6
0.5857
13.3702
54.3197
4.0627
5
6
1.2488
7.2775
1.6319
0.2242
6
5
1.9119
2.5519
5.9932
2.3485
7
1
2.5750
0.5765
0.1794
0.3111
В итоге получим = 8.1783
По таблице критических точек распределения ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 7 - 3=4 находим
Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины .
6. Построить график функции плотности распределения случайной величины в одной системе координат с гистограммой.( взяв в качестве математического ожидания и дисперсии их статистические оценки и ) и вычислив значение функции в точках: , , а также в точке левее первого и правее правого промежутка группировки.
7. Выполнить задание 6 для случайной величины .
8. Найти доверительные интервалы для математических ожиданий и дисперсий случайных величин и , соответствующие доверительной вероятности .
Найдем доверительный интервал для математического ожидания :
Рассмотрим статистику , имеющую распределение Стъюдента с степенями свободы. Тогда требуемый доверительный интервал определится неравенством . И доверительный интервал для выглядит следующим образом:
Найдем по таблицам ([2], стр. 391). По =0,95 и =120 находим: =1,980. Тогда требуемый доверительный интервал примет вид:
То есть: (20,93721;26,12946).
Найдем доверительный интервал для математического ожидания :
Рассмотрим статистику , имеющую распределение Стъюдента с степенями свободы. Тогда требуемый доверительный интервал определится неравенством . И доверительный интервал для выглядит следующим образом:
Найдем по таблицам ([2], стр. 391). По =0,95 и =60 находим: =2,001. Тогда требуемый доверительный интервал примет вид:
То есть: (20,043;27,056).
Известно, что если математическое ожидание неизвестно, то доверительный интервал для дисперсии при доверительной вероятности имеет вид
Для случайной величины найдем:
.
Таким образом, имеем доверительный интервал: (162,8696; 273,8515).
Для случайной величины найдем
Таким образом, имеем доверительный интервал: (134,82; 277,8554).
(Квантили распределения найдены по таблице [3], стр. 413).
9. Проверить статистическую гипотезу при альтернативной гипотезе на уровне значимости .
Рассмотрим статистику
,
где
,
которая имеет распределение Стъюдента ,
Тогда область принятия гипотезы .
Найдем s:
Найдем значение статистики :
По таблице квантилей распределения Стъюдента ([2], стр. 391)
Т. к. , то гипотеза принимается. Предположение о равенстве математических ожиданий не противоречит результатам наблюдений.
10. Проверить статистическую гипотезу при альтернативной гипотезе на уровне значимости.
Рассмотрим статистику , где , т.к. . Эта статистика имеет распределение Фишера . Область принятия гипотезы
Найдем значение статистики :
По таблицам найдем . Т.к. , то гипотеза принимается. Предположение не противоречит результатам наблюдений.
1. Сборник задач по математике для втузов. Ч. 3. Теория вероятностей и математическая статистика: Учеб. пособие для втузов / Под. ред. А.В. Ефимова. – 2-е изд., перераб. и доп. – М.: Наука. Гл. ред. физ.-мат. лит. , 1990. – 428 с.
2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: Учеб. пособие для студентов вузов. Изд. 4-е, стер. М.: Высш. Шк., 1997. – 400 с.: ил.
3. Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для втузов. Изд. 5-е, перераб. и доп. М., «Высш. школа», 1977.
4. Вентцель Е.С. Теория вероятностей. – М.: 1969, 576 с.
Информация | ||
![]() | ||
![]() | ||
![]() | ||
| ||
![]() | ||
![]() | ||
![]() | ||
![]() |
|
![]() |
|