Интерполяция
Введение
Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко
оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль
параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при
большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических
расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую
функцию j(х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях
аргумента полагают у(х)»j(х).
Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако
для многих целей используются и другие классы функций.
Выбрав узловые точки и класс приближающих функций, мы должны ещё выбрать одну определённую функцию из этого класса посредством
некоторого критерия — некоторой меры приближения или «согласия». Прежде чем начать вычисления, мы должны решить также, какую точность мы хотим иметь в
ответе и какой критерий мы изберём для измерения этой точности.
Всё изложенное можно сформулировать в виде четырёх вопросов:
1. Какие узлы мы будем использовать?
2. Какой класс приближающих функций мы будем использовать?
3. Какой критерий согласия мы применим?
4. Какую точность мы хотим?
Существуют 3 класса или группы функций, широко применяемых в численном анализе. Первая группа включает в себя линейные
комбинации функций 1, х, х2, …, хn, что совпадает с классом всех многочленов степени n (или меньше). Второй класс образуют функции cos aix, sin aix. Этот класс имеет отношение к рядам Фурье и интегралу
Фурье. Третья группа образуется функциями e-az. Эти функции встречаются в реальных ситуациях. К ним, например, приводят задачи
накопления и распада.
Что касается критерия согласия, то классическим критерием согласия является «точное совпадение в узловых точках». Этот критерий
имеет преимущество простоты теории и выполнения вычислений, но также неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении
значений в узловых точках). Другой относительно хороший критерий — это «наименьшие квадраты». Он означает, что сумма квадратов отклонений в узловых
точках должна быть наименьшей возможной или, другими словами, минимизирована. Этот критерий использует ошибочную информацию, чтобы получить некоторое
сглаживание шума. Третий критерий связывается с именем Чебышева. Основная идея его состоит в том, чтобы уменьшить максимальное отклонение до минимума.
Очевидно, возможны и другие критерии.
Более конкретно ответить на поставленные 4 вопроса можно лишь исходя из условий и цели каждой отдельной задачи.
Интерполяция многочленами
Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией j(х), свойства которой нам известны так, чтобы
отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции
аналитической, а также для интерполяции в таблицах.
Методы интерполяции Лагранжа и Ньютона
Один из подходов к задаче интерполяции — метод Лагранжа. Основная идея этого метода состоит в том, чтобы прежде всего найти
многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, сто функция

является требуемым многочленом степени n; он равен 1, если x=xj и 0, когда x=xi, i¹j. Многочлен Lj(x)×yj принимает значения yi в
i-й узловой точке и равен 0 во всех других узлах. Из этого следует, что
есть многочлен степени n, проходящий через n+1 точку (xi, yi).
Другой подход — метод Ньютона (метод разделённых разностей). Этот метод позволяет получить аппроксимирующие значения функции без
построения в явном виде аппроксимирующего полинома. В результате получаем формулу для полинома Pn,
аппроксимирующую функцию f(x):
P(x)=P(x0)+(x-x0)P(x0,x1)+(x-x0)(x-x1)P(x0,x1,x2)+…+
(x-x0)(x-x1)…(x-xn)P(x0,x1,…,xn);
— разделённая
разность 1-го порядка;
— разделённая
разность 2-го порядка и т.д.
Значения Pn(x) в узлах совпадают со значениями f(x)
Фактически формулы Лагранжа и Ньютона порождают один и тот же полином, разница только в алгоритме его построения.
Сплайн-аппроксимация
Другой метод аппроксимации — сплайн-аппроксимация — отличается от полиномиальной аппроксимации Лагранжем и Ньютоном. Сплайном
называется функция, которая вместе с несколькими производными непрерывна на отрезке [a, b], а на каждом частном интервале этого отрезка [xi, xi+1] в отдельности являются некоторым многочленом
невысокой степени. В настоящее время применяют кубический сплайн, то есть на каждом локальном интервале функция приближается к полиному 3-го порядка.
Трудности такой аппроксимации связаны с низкой степенью полинома, поэтому сплайн плохо аппроксимируется с большой первой производной. Сплайновая
интерполяция напоминает лагранжевую тем, что требует только значения в узлах, но не её производных.
Метод наименьших квадратов
Предположим, что требуется заменить некоторую величину и делается n измерений, результаты которых
равны xi=x+ei (i=1, 2, …, n), где ei — это ошибки (или шум) измерений, а х — истинное
значение. Метод наименьших квадратов утверждает, что наилучшее приближённое значение
есть такое число, для которого минимальна сумма квадратов отклонений от
:

Один из наиболее общих случаев применения этого метода состоит в том, что имеющиеся n наблюдений (xi, yi) (i=1, 2, …, n)
требуется приблизить многочленом степени m<n
y(x)=a0+a1x+a2x2+…+amxm
Вычисленная кривая у(х) в некотором смысле даёт сложное множество значений уi. Метод
наименьших квадратов утверждает, что следует выбирать многочлен, минимизирующий функцию.
Для нахождения минимума дифференцируем по каждой из неизвестных ak. В результате получим:

Определитель этой системы отличен от нуля и задача имеет единственное решение. Но система степеней не ортогональна, и при больших
значениях n задача плохо обусловлена. Эту трудность можно обойти, используя многочлены ортогональные с заданным весом на
заданной системе точек, но к этому прибегают только в задачах, связанных с особенно тщательной статической обработкой эксперимента.
Полиномы Чебышева
Критерии согласия данного метода — минимизация максимальной ошибки.
Полиномы Чебышева определяются следующим образом: Tn(x)=cos(n×arccos(x))
Например: T0(x)=cos(0)=1,
T1(x)=cos(q)=x,
T2(x)=cos(2q)=cos2(q)-sin2(q)=2x2-1.
Можно было бы и дальше использовать тригонометрические соотношения для нахождения полиномов Чебышева любого порядка, но будет лучше
установить для них рекурентное соотношение, связывающее Tn+1(x), Tn(x) и Tn-1(x):
Tn+1(x)=cos(nq+q)=cos(nq)cos(q)-sin(nq)sin(q),
Tn-1(x)=cos(nq-q)=cos(nq)cos(q)-sin(nq)sin(q).
Складывая эти неравенства, получим:
Tn+1(x)+Tn-1(x)=2cos(nq)cos(q)=2xTn(x);
Tn+1(x)=2xTn(x)-Tn-1(x).