Центральная Научная Библиотека  
Главная
 
Новости
 
Разделы
 
Работы
 
Контакты
 
E-mail
 
  Главная    

 

  Поиск:  

Меню 

· Главная
· Биология
· Геология
· Зоология
· Коммуникации и связь
· Бухучет управленчучет
· Водоснабжение   водоотведение
· Детали машин
· Инновационный   менеджмент
· Качество упр-е   качеством
· Маркетинг
· Математика
· Мировая экономика МЭО
· Политология
· Реклама и PR
· САПР
· Биология и химия
· Животные
· Литература   языковедение
· Менеджмент
· Не Российское   законодательство
· Нотариат
· Информатика
· Исторические личности
· Кибернетика
· Коммуникация и связь
· Косметология
· Криминалистика
· Криминология
· Наука и техника
· Кулинария
· Культурология
· Логика
· Логистика
· Международное   публичное право
· Международное частное   право
· Международные   отношения
· Культура и искусства
· Металлургия
· Муниципальноое право
· Налогообложение
· Оккультизм и уфология
· Педагогика


Группы преобразований

Группы преобразований

Группы преобразований 1.Перемещения

Пусть X - множество всех точек прямой  Группы преобразований, плоскости  Группы преобразований или трехмерного пространства  Группы преобразований. Обозначим через d(P, Q) расстояние между точками P и Q множества X. Отображение f: X ® X f(P) = P называется перемещением, если для всех P и Q d(P, Q) = d(P , Q ).

Примеры.

1. Пусть в  Группы преобразований выбрана правая декартова прямоугольная система координат (x, y) с началом О. Поворот  Группы преобразований плоскости на угол j вокруг точки О задается формулами R =  Группы преобразованийR. Здесь P=  Группы преобразований , R =  Группы преобразований. Очевидно, поворот является перемещением плоскости.

Отметим, что  Группы преобразований(О) =О, то есть точка О остается неподвижной при повороте. Аналогично, в  Группы преобразований можно рассмотреть поворот  Группы преобразованийна угол j вокруг оси, заданной единичным вектором v и точкой О. Легко проверить, что это перемещение задается формулой: R =Rcosj + (R´ v )sinj +v (1-cosj )(R× v ) . Все точки оси поворота являются неподвижными.

2. Перемещением будет и параллельный перенос  Группы преобразований на вектор v , Очевидно, P= R+v . Неподвижных точек перенос не имеет.

3. Пусть l некоторая прямая в  Группы преобразований. (Зеркальное) отражение  Группы преобразований относительно этой прямой является перемещением. Если в декартовой прямоугольной системе координат уравнение прямой имеет вид y = tg(j /2) x , то отражение задается формулой : P=  Группы преобразованийR . Аналогично, если p некоторая плоскость в  Группы преобразований, то отражение  Группы преобразований относительно этой плоскости будет перемещением. Если n единичный вектор нормали к плоскости p , проходящей через начало координат, то R = R - 2(R× n)n .

Переносы и отражения (примеры 2 и 3) можно рассматривать и в  Группы преобразований.

4. Композиция U* V (последовательное выполнение ) двух перемещений U и V снова будет перемещением: (U* V)(P) = U(V(P)). Например,  Группы преобразований =  Группы преобразований*  Группы преобразований= I - тождественное перемещение.

2. Связь с линейными операторами.

Теорема 1

Пусть f: X ® X - перемещение, A, B, C, D - точки X, f(A) = A и т.д. Если AB = CD (как свободные векторы), то A B = C D .

Доказательство.

Достаточно проверить, что в условиях теоремы четырехугольник A B D C является параллелограммом. Пусть О точка пересечения диагоналей AD и BC. Принадлежность точки О отрезку АD равносильно равенству: d(A, O) + d(O, D) = d(A, D). Поскольку для образов этих точек имеет место аналогичное равенство d(A , O ) + d(O , D ) = d(A , D ) , мы видим, что O лежит на отрезке A D и делит его пополам, поскольку d(A , O ) = d(A ,O) = 1/2 d(A ,D) = 1/2 d(A , D ) . Аналогично, O лежит на C D и делит его пополам. Следовательно, A B D C - параллелограмм.

Из теоремы 1 следует, что если  Группы преобразований - пространство свободных векторов, то для всякого перемещения f: X ® X определено отображение: f*: V ® V.

Отметим, что если О - некоторая фиксированная точка X, то для любой точки P точка f(P) получается из O переносом на вектор f*(OP). Отсюда вытекает, что перемещение f однозначно определяется отображением f* и точкой O .

Теорема 2.

Отображение f* является линейным оператором в V и сохраняет скалярное произведение.

Доказательство.

Свойство f*(u + v) = f*(u) +f*(v) следует из определения сложения векторов : если u = AB , v = BC , то u + v = AC. Так как при перемещении любой треугольник ABC переходит в равный треугольник, то сохраняются не только длины, но и углы между векторами, а значит и скалярное произведение. Наконец, использую сохранение скалярного произведения, имеем:  Группы преобразований2 Группы преобразований+  Группы преобразований=0. Следовательно, f*(l v) = l f*(v) , то есть отображение f* линейно.

Следствие

Отображение  Группы преобразований евклидова пространства V, обладающее свойством  Группы преобразованийявляется линейным оператором и сохраняет скалярное произведение.

Как известно, оператор в конечномерном пространстве определяется своей матрицей. Матрица A оператора, сохраняющего скалярное произведение, называется ортогональной и имеет следующие свойства:

Матрица А невырождена, более того det(A) =  Группы преобразований1. Операторы с определителем 1 сохраняют ориентацию пространства, а с определителем (-1) меняют ее на противоположную. Все собственные значения A - комплексные числа по модулю равные 1.

Кроме того, известны простейшие формы ортогональных матриц в ортонормированном правом базисе. Эти простейшие формы указаны в следующей таблице:

dimV





Информация 






© Центральная Научная Библиотека