Центральная Научная Библиотека  
Главная
 
Новости
 
Разделы
 
Работы
 
Контакты
 
E-mail
 
  Главная    

 

  Поиск:  

Меню 

· Главная
· Биология
· Геология
· Зоология
· Коммуникации и связь
· Бухучет управленчучет
· Водоснабжение   водоотведение
· Детали машин
· Инновационный   менеджмент
· Качество упр-е   качеством
· Маркетинг
· Математика
· Мировая экономика МЭО
· Политология
· Реклама и PR
· САПР
· Биология и химия
· Животные
· Литература   языковедение
· Менеджмент
· Не Российское   законодательство
· Нотариат
· Информатика
· Исторические личности
· Кибернетика
· Коммуникация и связь
· Косметология
· Криминалистика
· Криминология
· Наука и техника
· Кулинария
· Культурология
· Логика
· Логистика
· Международное   публичное право
· Международное частное   право
· Международные   отношения
· Культура и искусства
· Металлургия
· Муниципальноое право
· Налогообложение
· Оккультизм и уфология
· Педагогика


Гравитационное поле точечной массы и шара

Гравитационное поле точечной массы и шара

Гравитационное поле точечной массы и шара

В. В. Орлёнок, доктор геолого-минералогических наук

Нахождение аномалий силы тяжести, создаваемых телами известной формы, составляет прямую задачу гравиметрии. В основе аналитического способа решения прямой задачи лежит известный закон всемирного тяготения Ньютона, согласно которому притяжение единичной массы (весом 1 г) элементарной массой равно

 Гравитационное поле точечной массы и шара.      (V.4)

Положим, что точка с массой dm находится на расстоянии r от пункта наблюдения и на глубине h от поверхности Земли (рис. 26). Потенциал точки будет

 Гравитационное поле точечной массы и шара,      (V.5)

где  Гравитационное поле точечной массы и шара, т.е.

 Гравитационное поле точечной массы и шара.    (V.6)

Из определения силы тяжести (см. гл. 4, §3) ее вертикальная и горизонтальная составляющие определяются как первая и вторая производные по h и x:

 Гравитационное поле точечной массы и шара;     (V.7)

 Гравитационное поле точечной массы и шара.        (V.8)

 Гравитационное поле точечной массы и шара;   (V.9)

 Гравитационное поле точечной массы и шара.     (V.10)

Максимальное и минимальное значение Dg принимает при x = 0 и x = ±¥:

 Гравитационное поле точечной массы и шара.        (V.11)

 Гравитационное поле точечной массы и шара.               (V.12)

Графики функций Dg и Vxz приведены на рис. 26.

Притяжение шара. Многие геологические тела в земной коре могут быть аппроксимированы шаром (купола, дайки, подводные холмы и т.д.). Предположим, что шар массой М залегает на глубине h и на расстоянии r от точки наблюдения, расположенной на поверхности земли (рис. 27). Будем считать шар однородным по плотности. Поместим его под центром системы координат xoz (y = 0). Притяжение шара эквивалентно притяжению точки, помещенной в центр шара. Поэтому можно воспользоваться формулой, полученной для элементарной массы (V.9):

 Гравитационное поле точечной массы и шара.  (V.13)

Аналогично имеем для второй производной потенциала силы тяжести Vxz:

 Гравитационное поле точечной массы и шара.   (V.14)

В плане гравитирующим массам, имеющим форму, близкую к шару, соответствуют изометрические аномалии, максимум которых располагается над центром тяжести шара (рис. 27).

Таким образом, над центром шара вертикальная составляющая силы тяжести Dg имеет максимум, горизонтальная составляющая Vxz – минимум. С удалением от шара кривые Dg и Vxz асимметрически приближаются к оси x (рис.27).

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://elib.albertina.ru








Информация 






© Центральная Научная Библиотека