Глава 8 | «« Назад |  Оглавление |  Вперед »»

Физические параметры оптических волокон.

Принцип работы оптоволоконной линии не сложен. Источником распространяемого по оптическим кабелям света является светодиод (или полупроводниковый лазер), а кодирование информации осуществляется двухуровневым изменением интенсивности света (0-1). На другом конце кабеля принимающий детектор преобразует световые сигналы в электрические.

Для передачи информации мало создать световую волну, надо ее сохранить и направить в нужном направлении. В однородной среде свет (электромагнитная волна) распространяется прямолинейно, но на границе изменения плотности среды по оптическим законам происходит изменение направления (отражение), или преломление.

В используемых в настоящее время схемах луч от светодиода или лазера впускают в более плотную среду, ограниченную менее плотной. При правильном подборе материалов, происходит эффект полного отражения (преломление отсутствует). Таким образом, транспортируемый сигнал "идет" внутри замкнутой среды, проделывая путь от источника сигнала до его приемника.

Остальные элементы кабеля - лишь способ предохранить хрупкое волокно от повреждений внешней средой различной агрессивности.

Конструкция оптического волокна.

Рис. 8.1. Конструкция оптического волокна

Сложность конструкции скорее кажущаяся, чем реальная. Основные элементы показаны на рисунке. Внешний диаметр отражающей оболочки унифицирован для всех типов кабелей и составляет 125±2 мкм. В этот размер входит и 2-3 мкм. слой лака, который служит защитой от влаги и связанной с ней коррозии.

Первичную механическую прочность и гибкость рассматриваемой конструкции придает защитное покрытие из эпоксиакриолата, часто называемое буфером. Как правило, для удобства монтажа его окрашивают в разные цвета. Толщина покрытия составляет 250±15 мкм. Кроме этого, для лучшей защиты волокна и более удобного монтажа разъемов часто применяются конструкции с вторичным буфером диаметром 900 мкм, который без зазора уложен на первичный.

Рассмотрим подробнее оптические параметры волокна. Все распространенные типы волокон характеризуются двумя важнейшими параметрами: затуханием и дисперсией.

Затухание характеризует потерю мощности передаваемого сигнала на заданном расстоянии, и измеряется в дБ/км, где Децибел - логарифмическое выражение отношения мощности, выходящей из источника Р1, к мощности, входящей в приемник Р2, дВ = 10*log(P1/P2). Потери в 3 дБ означают, что половина мощности потеряна. Потеря 10 дБ означает, что только 1/10 мощности источника доходит до приемника, потери 90%. Волоконно-оптические линии как правило способны нормально функционировать при потерях в 30 дБ (прием всего 1/1000 мощности).

Есть два принципиально различных физических механизма, вызывающих данный эффект.

  • Потери на поглощение. Связаны с преобразованием одного вида энергии в другой. Электромагнитная волна определенной длины вызывает в некоторых химических элементах изменение орбит электронов, что, в свою очередь, ведет к нагреву волокна. Естественно, что процесс поглощение волны тем меньше, чем меньше ее длина, и чем чище материал волокна.
  • Потери на рассеяние. Причина снижения мощности сигнала в этом случае - означает выход части светового потока из волновода. Обусловлено это обычно неоднородностями показателя преломления материалов. Известно, что с уменьшением длины волны потери рассеивания возрастают.

Окна прозрачности оптических волокон.

Рис. 8.2. Окна прозрачности оптических волокон

В теории, лучших показателей общего затухания можно достичь на пересечении кривых поглощения и рассеивания. Реальность несколько сложнее, и связана с химическим составом среды. В кварцевых волокнах (SiO2) кремний и кислород проявляют активность на определенной длине волны, и существенно ухудшают прозрачность материала в двух окрестностях.

В итоге образуются три окна прозрачности, в рамках которых затухание имеет наименьшее значение. Самые распространенные значения длины волны:

0.85 мкм;
1.3 мкм;
1.55 мкм.

Понятно, что именно под такие диапазоны разработаны специальные гетеролазеры, на которых основываются современные ВОЛС (волоконно-оптические системы связи).

Надо специально заметить, что влияние частоты сигнала на реальные технологии сегодняшнего дня очень большое. Для примера, инфракрасный луч проходит в волокне с небольшим затуханием 10 км, красный свет (длина волны 0,65 мкм) пройдет лишь 0,5 км, а синий (0,43 мкм) и вообще меньше 50 м.

Оптический бюджет.

Каждый компонент оптоволоконной линии имеет свою величину оптических потерь. Допустимые потери оптического сигнала на всём пути от передатчика до приёмника часто называют оптическим бюджетом. Рассчитывается он на основании информации, предоставленной производителем оборудования.

Упрощенно можно представить себе расчет оптического бюджета в виде следующей схемы:

Оптический бюджет.

Рис. 8.2b. Оптический бюджет

Потери на инжектирование возникают при вводе излучения от источника в волокно, и зависят в основном от диаметра сердечника. Потери на сплайсах, местах сварки при их наличии в линии должны быть включены подобно потерям коннекторах.

Так же рекомендуется учитывать, что мощность лазера (светодиода) несколько уменьшается с течением времени. Обычно на ремонт и старение эмиттера отводится от 3 до 6 дБ.

Дисперсия.

Второй важный параметр оптического волокна - дисперсия. Он означает рассеяние во времени спектральных и модовых составляющих оптического сигнала. Существуют три типа дисперсии: межмодовая, материальная и межчастотная.

  • Межмодовая дисперсия обусловлена неидеальностью современных источников света, которые испускают волны в нескольких направлениях, и далее они проходят по разным траекториям (иначе говоря - будут иметь разные моды). Как следствие, лучи достигнут приемника в разные моменты времени.
  • Материальная дисперсия обусловлена зависимостью показателя преломления от длины волны. Если распределение плотности волокна будет неравномерным, то волны, проходящие путь по разным траекториям, будут иметь разные скорости распространения. И, соответственно, попадать в приемник в разное время.
  • Межчастотная дисперсия. Источники излучения не идеальны, и испускают волны различной длины. В кварцевом стекле более короткие волны распространяются быстрее, а следовательно достигают конца световода в разные моменты времени.

Все виды дисперсии отрицательно влияют на пропускную способность оптоволоконного канала. Так как в настоящее время используются только цифровые способы передачи информации, то световой сигнал поступает с передатчика импульсами. И чем сильнее размыт по времени импульс на выходе (эффект дисперсии), тем сложнее его правильный прием. Иначе говоря, дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.

При оценке пользуются термином "полоса пропускания", который понимается как величина, обратная к уширению импульса при его прохождении по оптическому волокну расстояния в 1 км. Измеряется полоса пропускания в МГц*км.

Специально нужно отметить, что потери, вызванные затуханием и дисперсией, равномерно распределяются по всей длине кабеля. Какие-либо помехи отсутствуют, если не принимать во внимание системы с частотным уплотнением, которые в недорогих сетях еще долго не получат распространения.

Глава 8 | «« Назад |  Оглавление |  Вперед »»