Часть 2. Глава 4 | «« Назад |  Оглавление |  Вперед »»

Термины по "ПУЭ".

Как обычно, в начале главы - унылые термины. Однако без них в дальнейшем изложении (и тем более в ПУЭ) просто невозможно будет что-то понять.

7.1.3. Вводное устройство (ВУ) - совокупность конструкций, аппаратов и приборов, устанавливаемых на вводе питающей линии в здание или в его обособленную часть. Вводное устройство, включающее в себя также аппараты и приборы отходящих линий, называется вводно-распределительным (ВРУ).

7.1.4. Главный распределительный щит (ГРЩ) - распределительный щит, через который снабжается электроэнергией все здание или его обособленная часть. Роль ГРЩ может выполнять ВРУ или щит низкого напряжения подстанции.

7.1.5. Распределительный пункт (РП) - устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных электроприемников или их групп (электродвигателей, групповых щитков).

7.1.6. Групповой щиток - устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных групп светильников, штепсельных розеток и стационарных электроприемников.

7.1.7. Квартирный щиток - групповой щиток, установленный в квартире и предназначенный для присоединения сети, питающей светильники, штепсельные розетки и стационарные электроприемники квартиры.

7.1.8. Этажный распределительный щиток - щиток, установленный на этажах жилых домов и предназначенный для питания квартир или квартирных щитков.

7.1.9. Электрощитовое помещение - помещение, доступное только для обслуживающего квалифицированного персонала, в котором устанавливаются ВУ, ВРУ, ГРЩ и другие распределительные устройства.

7.1.10. Питающая сеть - сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до ВУ, ВРУ, ГРЩ. 7.1.11. Распределительная сеть - сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков.

7.1.12. Групповая сеть - сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников.

Устройство сети 220/380 Вольт

Надежное питание для сети передачи данных - важнейшее составляющее долгой и успешной работы. Наиболее распространенной в России является трехфазная сеть с напряжением 380 Вольт, и получаемая из нее однофазная с напряжением 220 Вольт. Классическую схему можно видеть на следующем рисунке:

Сеть 220/380 Вольт

Рис. 4.1. Сеть 220/380 Вольт.

Три фазы (A, B, C) имеют между собой разницу в напряжении 380 вольт (если брать мгновенное значение), и каждая из фаз имеет потенциал 220 вольт относительно нуля (N). Соответственно, если необходимо получить однофазное питание, следует подключить один из проводов к фазе, а другой к нулю (обычно корпусу электрощитка).

И наоборот, питание от двух фаз практически никогда не используется. Более того, подключение устройства 220В к двум фазам скорее всего надолго выведет его из строя.

Если воспользоваться сетевым жаргоном, то можно сказать, что трехфазные линии - бэкбон силовой сети. Все магистральные каналы, вплоть до вводов в здания (этажи, отсеки, цеха) выполнены по трехфазной схеме. Так же запитаны и некоторые мощные потребители - асинхронные электродвигатели, крупные нагреватели, и т.п. Но для питания активного сетевого оборудования такой способ подключения фактически никогда не используется.

Однако на этом внешняя простота построения силовой сети заканчивается. Если фазные провода всегда одинаковые, то по типам заземления удобно различать следующие схемы: ТN-С, ТN-S, ТN-С-S, ТТ, IТ. Такая запись практически не применяется в "ПУЭ", да и редка в отечественной литературе. Однако, в связи с активной экспансией европейских норм, применяется на практике все чаще.

В этом типе записи первая буква определяет тип заземления источника питания. "Т" - означает прямое соединение нейтрали источника питания c землей, а в варианте "I" все токоведущие части изолированы от земли (последний вариант для России экзотичен).

Вторая буква показывает тип заземления открытых проводящих частей (например корпуса электрощитка): "Т" - непосредственная связь с землей, независимо от способа заземления источника питания; "N" - связь открытых проводящих частей с точкой заземления источника питания.

В последнем случае различают характер этой связи, точнее говоря, устройство нулевого защитного и нулевого рабочего проводников. В варианте "S" функции и нулевого рабочего (N) и нулевого защитного (PE) проводников обеспечиваются раздельными проводниками, "С" - используется один общий проводник (PEN).

Кроме этого, схемы могут быть комбинированными, например при ТN-С-S, когда внутреннее оборудование выполняется по схеме ТN-S, а наружное остается в варианте ТN-С.

Вариант ТN-S

Вариант ТN-С-S

Варианты ТN-C

Рис. 4.2. Варианты ТN-С, ТN-S, ТN-С-S.

Сложно сейчас сказать наверняка, почему в России нашла свое применение схема ТN-С. Возможно, сыграла свою роль низкая стоимость, а электробезопасность во времена СССР стояла далеко не на первом месте. Но на сегодня более 90% силовых сетей выполнены именно по этой схеме.

Повсеместное использование общего проводника (PEN) даже повлекло распространение термина "зануление" - именно так "приходится именовать" заземление в схеме ТN-С.

Но к этому вопросу мы вернемся ниже, уже на базе рекомендаций отечественного ПУЭ.

Элементная база силовой сети.

В общем случае реальная сеть может иметь весьма сложную и запутанную конфигурацию. Но классическая "упрощенная" схема выглядит таким образом:

Типовая схема сети электропитания

Рис. 4.3. Типовая схема сети электропитания.

На рисунке наиболее распространенный на сегодня вариант ТN-С-S, позволяющая обеспечить достаточный уровень электробезопасности в сети без коренной реконструкции последней.

С внешнего ввода кабель заводится на главный рубильник (3 фазы), далее разводится по группам потребителей, каждая из которых имеет свой автомат выключения, и защиту в виде УЗО и ДПН.

Можно выделить следующие элементы силовой сети:

1. Автоматические выключатели. Устройства простые, и совмещают в себе выключатель и предохранитель. Бывают с электромагнитным, тепловым и комбинированным расцепителем.

В случае использования Электромагнитного расцепителя срабатывание происходит при прохождении через обмотку тока выше определенного значения. Такие автоматы защищают сеть от короткого замыкания. Тепловой расцепитель устроен проще - цепь разрывает биметаллическая пластина, изменяющая свою форму при нагревании, и служат для защиты от длительной перегрузки.

Надо заметить, что деление во многом условно, тем более сейчас распространены комбинированые типы устройств.

2. УЗО - устройство защитного отключения, принцип работы которого основан на втором законе Кирхгофа (алгебраическая сумма токов в каждом узле равна нулю). Так как при повреждении изоляции, прикосновении человека к токоведущему проводу и прочих угрожающих безопасности явлениях неизбежно появляются токи утечки, их можно отследить и отключить линию.

Устройство защитного отключения

Рис. 4.4. Устройство защитного отключения.

Таким образом, УЗО можно и нужно рассматривать как простой и надежный способ защиты от поражения электрическим током. Но есть и отрицательные моменты в применении таких устройств.

Установка УЗО на линиях, питающих телекоммуникационное оборудование и вычислительную технику, может привести к перерыву связи, потере данных, и даже порче оборудования. Поэтому, пункт 7.1.81 ПУЭ прямо запрещает применение УЗО для электроприемников, отключение которых может привести к ситуациям, опасным для потребителей (классический пример - пожарная сигнализация).

Понятно, что нарушение связи можно так же рассматривать как чрезвычайную и недопустимую ситуацию. И стараться защищать питание узлов связи другими способами (хотя бывают случаи, в которых спорить с энергонадзором сложно).

3. Автомат защиты от перенапряжения (ДПН). Принцип работы прост - при превышении напряжения питающей сети выше порога (обычно 260 В), ДПН отключает потребителя от повышенного напряжения (или дает команду на отключение УЗО).

4. Кабеля, как без них. Для начала, сечение проводника можно определить исходя из тока - не более 10 Ампер на 1 кв. мм (точнее нужно смотреть в специальных таблицах). Ток можно рассчитать как I=P/220 для однофазной сети, где P - совокупная мощность потребителей.

Проводники могут быть однопроволочные и многопроволочные. Многопроволочные используются обычно в тех случаях, когда от требуется гибкость или мобильность (времянки, переноски, удлинители). Однопроволочные служат для неподвижных соединений, стационарной проводки. Многопроволочные дороже, имеют несколько больший диаметр, сложно крепятся в болтовых соединениях.

В качестве следующего важнейшего параметра можно назвать материал проводов. В любой ситуации рекомендуется медный кабель, алюминиевый использовать нежелательно. В отрасли компьютерных сетей и провайдинга просто нет задач, на которых сказывается дешевизна алюминиевых проводов.

Часть 2. Глава 4 | «« Назад |  Оглавление |  Вперед »»